Counting Methods

1. Fundamental Counting Principle – Tree Diagram

<u>Definition</u> Given 2 activities A1 and A2 that can be performed in N1 and N2 different ways each, the total number of ways A1 followed by A2 can be performed is N1 \times N2.

Examples

2 skirts and 3 blouses: 2 x 3 = 6
1 book from list of 5 and 1 book from list of 7: 5 x 7 = 35
Manager from 4 people and Asst Manager from 3 people: 4 x 3 = 12
2 highways from Tucson to Phoenix, 3 highways from Phoenix to Flagstaff 2x3=6

2. Permutations

Definition

- 1. An arrangement of items from a single set
- 2. Repetitions are not allowed
- 3. The order is significant

Examples

5 people sitting in 5 different places around a table: $5 \times 4 \times 3 \times 2 \times 1$ Prizes for 1st place, 2nd place 3rd place chosen from 10 people: 10 x 9 x 8 Select Officers P, VP, Sec, Treas from 10 people: 10x9x8x7 10 students in contests, 1st, 2nd, & 3rd prizes 10 x 9 x 8 Penny, nickel, dime, and quarter to 3 children 4 x 3 x 2

<u>Notation</u> "8 things 3 at a time" $_{8}P_{3} = 8 \times 7 \times 6$ " n things r at a time" nPr

nPr = n (n-1)(n-2) ...r times
Also
$$nPr = \frac{n!}{(n-r)!}$$
 where $0! = 1$

nPr can also written as P(n,r)

If there is more than one of some item

7!

e.g. zoonooz has 2 z's and 4 o's $\overline{2!4!}$

The number of permutations in which i things are alike and another j things are alike is $\frac{n!}{i! j!}$ where n is the total number of things

3. Combinations

Definition

- 1. A selection of items from a single set
- 2. Repetitions are not allowed
- 3. The order does not matter

Examples

Select a set of 3 out of 7 books $\frac{7x6x5}{3x2x1}$ Select a committee of 4 from 10 people $\frac{10x9x8x7}{4x3x2x1}$ <u>Notation</u>

nCr =
$$\frac{{}_{n}P_{r}}{r!}$$

Also nCr = $\frac{n!}{r!(n-r)!}$

nCr can also be written as C(n,r)

The number of combinations is always less than the number of permutations of a set of objects

4. More Than One Method Used Together

Examples:

1. Cafeteria offers 4 meats, 6 vegetables, 5 desserts. How many ways can a meal be served with 2 meats, 3 vegetables, and 2 desserts?

C(4,2) x C(6,3) x C(5,2) = $\frac{4x3}{2x1}x\frac{6x5x4}{3x2x1}x\frac{5x4}{2x1} = 1200$

2. Club as 14 males and 16 females. A committee of 3 men and 3 women is formed.

Male = C(14,3) =
$$364 = \frac{14!}{3!(11!)}$$

Female = C(16,3) = $560 = \frac{16!}{3!(13!)}$

They can be chosen 364 x 560 different ways.